An Introduction to Machine Learning with Julia

August 14, 2023

An Introduction to Machine Learning with Julia

Explore why Julia is suitable for machine learning, and get an introduction to the features and packages that can help you get started.

What is Julia?

Julia is a relatively newer programming language that was first released in 2012. Even though Julia has only been around for ten years, it has been growing rapidly and is now one of the top 30 programming languages according to the October 2022 TIOBE index.

Programming Through Time

A standout feature of Julia is that it was built for scientific computing. This means that Julia is both easy to use and fast while also capable of handling large amounts of data and complex computations at blazing speeds. A famous Julia tagline is that it "runs like C but reads like Python."

Julia is a compiled language that reads like an interpreted language. Most other traditional compiled languages (such as C or C++) capable of solving computationally intensive problems must first be compiled into a machine-readable format before it can be executed. 

On the other hand, Julia can achieve the same performance with the simplicity of an interpreted language (like Python) but without needing to be compiled before executing. Instead, Julia uses a Just-In-Time (JIT) compiler that compiles at run-time.

Want to Earn daily 500 to 800 USD

 by selling High demand &

 Ultra modern and novel Gadgets online ?

START HERE 

Why Choose Julia for Machine Learning?

Python has dominated the data science and machine learning landscape for a long time, and for good reason. It is an incredibly powerful, flexible programming language. However, there are some downsides to Python that are non-issues in Julia. 

Some of the Python downsides compared to Julia are:

  • Python is a slower, interpreted language with limited options to improve its speed. This can make big data machine learning projects inefficient compared to Julia.
  • Python uses single dispatch, which places a significant limitation on the types that can be used and shared between functions and libraries.
  • Parallel computing and threading are not built into the design of the Python language. While there are libraries that allow some threading, it is not optimal.

In this section, we go over several reasons why Julia is a great choice for machine learning.

You can further explore the rise of the language and whether Julia is worth learning in 2022 in a separate blog post.

1. Simplicity & Ease of Use

Julia has a very friendly syntax that is close to English. This makes it much quicker to pick up and learn since the code is often intuitive and easy to understand.

Julia is also quick and easy to install and get started with right away. There is no need to install special distributions of the language (such as with Python and Anaconda) or to follow any convoluted installation process (like with C and C++).

For machine learning practitioners, the sooner you can remove the friction in the programming aspects, the sooner you can start doing what you do best: analyzing data and building models.

2. Speed

One of Julia's greatest hallmarks is its speed. We mentioned above that Julia is a compiled language, providing considerable speed improvements over interpreted languages.

Julia belongs to the "petaflop club" together with C, C++, and Fortran. That's right; this exclusive club has only four members and one requirement for joining: simply reach speeds of one petaflop (i.e., one thousand trillion operations) per second at peak performance.

It’s not uncommon to encounter large amounts of data in machine learning, so using a fast programming language can significantly improve training times and reduce costs when deploying models into production.

3. Devectorized Code is Fast

In Julia, there is no need to vectorize code to increase performance. Writing devectorized code in the form of loops and native functions is already fast. While vectorizing code in Julia may result in a slight speed improvement, it is unnecessary.

Writing and using devectorized code can save you a lot of time when building machine learning models since you will not need to refactor code to improve the speed.

4. Code Re-Use & Multiple Dispatch

Julia uses duck-typing to 'guess' the appropriate type for a function. This feature means: that if it walks like a duck, and talks like a duck, it's probably a duck. So, any object that meets the implicit specifications of a function is supported - no need to specify it explicitly. 

However, duck-typing is not always appropriate for special cases, and this is where multiple dispatch comes in. Using multiple dispatch, you can define multiple special cases for a function, and depending on which conditions are met, the function will choose the most appropriate option at run-time.

Want to Earn daily 500 to 800 USD

 by selling High demand &

 Ultra modern and novel Gadgets online ?

START HERE 

Multiple dispatch is useful in machine learning because you do not have to think of every possible type that can be allowed to pass to a function. Instead, packages in Julia can remain highly flexible while also being about to share code and types between different packages. 

Consider the date format: there are several packages available that use their own custom date and date/time formats. For example, you have Python’s built-in datetime format as well as the Pandas datetime64[ns] format. In Julia, there is just a single date-based format shared across all packages from the built-in dates module.


5. Built-In Package Management

Packages are managed automatically in Julia with Pkg. Pkg is to Julia what Pip is to Python, but much better. Environments are managed in Julia through two files: Project.toml and Manifest.toml. These files tell Julia which packages are used in the project and their versions. Instead of defining special environments externally, the folder location of your Julia files (containing the Project and Manifest toml files) becomes the environment.

This kind of built-in, simplified approach to package management makes it easier to share and reproduce your machine learning projects and analyses.

6. Two-Language Problem

Did you know that only 20-30% of Python packages are actually made up of Python code? 

Flux vs Tensorflow

This reliance on other languages is because, in order to develop packages that are efficient and effective at their tasks, they must be built in low-level languages like C and C++. 

These packages use such languages because, in scientific computing, developing solutions and packages usually involves two programming languages: the easy-to-use prototype language (like Python) to build a fast initial implementation of the solution and then the fast language (like C++) where all code is rewritten into for the final version of the solution. 

As you can imagine, this is a slow, inefficient process not just for the initial development but also for long-term maintenance and new features.

On the other hand, packages in Julia can be prototyped, developed, and maintained in Julia. As a result, this cuts down the entire development cycle to just a fraction of the time.

Julia Machine Learning Packages

Julia now contains over 7,400 packages in its general registry. While this is far from the sheer volume of packages available in Python (over 200,000), finding the right package to solve a specific problem can still be challenging.

This section will explore the main packages you will need to analyze data and build machine learning models. 

However, if you're just starting out with machine learning in Julia, try the package toolbox first: MLJ. This package was specifically built to gather the most popular machine learning packages into a single, easily accessible place, saving you time trying to find the best machine learning package for your project. MLJ currently supports over 20 different machine learning packages.

Below is a list of some of the most common packages you will encounter in machine learning projects - from importing, cleaning, and visualizing data, to building models:

  • Notebook: Pluto, IJulia, Jupyter
  • Package/environment management: Pkg
  • Importing and handling data: CSV, DataFrames
  • Plotting and output: Plots, StatsPlots, LaTeXStrings, Measures, Makie
  • Statistics and Math: Random, Statistics, LinearAlgebra, StatsBase, Distributions, HypothesisTests, KernelDensity, Lasso, Combinatorics, SpecialFunctions, Roots
  • Individual machine learning packages:
    • Generalized linear models (e.g. linear regression, logistic regression): GLM
    • Deep Learning: Flux, Knet
    • Support vector machines: LIBSVM
    • Decision tree, random forest, AdaBoost: DecisionTree
    • K-nearest neighbors: NearestNeighbors
    • K-means clustering: Clustering
    • Principal component analysis: MultivariateStats

There are also many implementations and wrappers that are available for popular Python packages such as Scikit-Learn and Tensorflow. However, you don’t necessarily need to use these packages, as you may lose out on many of the powerful advantages of using Julia (such as speed and multiple dispatch).

Getting Started with Julia for Machine Learning

One of the best ways to get started with Julia is with the Pluto notebook environment. In this section, we discuss the benefits of using Pluto, especially at the beginning of your data science journey when you're still learning how to build machine learning projects with Julia. We also go over some of the best resources to use to learn more about Julia and machine learning.

Pluto

Plutojl

Pluto is a simple-to-use interactive Notebook environment with a friendly UI. This simplicity makes it very well suited to beginners starting with Julia. Pluto also has many additional features that allow you to build even more compelling machine learning solutions almost effortlessly:

Reactive

When evaluating one cell, Pluto will also consider which other cells must be run. This feature ensures any dependent cells are updated before the current cell is evaluated. 

A great thing about Pluto is that it is smart enough to know exactly which cells are required to run in addition to the current cell so that you don't run into the problem of needing to update every cell if you make a change somewhere in your notebook.


Pluto also cleans up old or deleted code and updates the output of any dependent cells to reflect this action. If you define a variable in one cell and later delete that cell, Pluto will also delete that variable from its namespace. In addition, any dependent code cells will show an error message to show that the variable it needed has now been deleted.

Want to Earn daily 500 to 800 USD

 by selling High demand &

 Ultra modern and novel Gadgets online ?

START HERE 

Interactive

Reactivity causes automatic interactivity between cells. This is especially useful for quickly creating interactive charts or objects that are automatically updated when a variable changes. 

The beautiful thing about Pluto is that that variable can be an interactive widget in the notebook, such as a built-in slider or text box. You can even design your own widgets if you know Javascript.

Reactivity and interactivity allow you to produce dynamic reports and dashboards based on your machine learning models and data analyses. The key to a successful machine learning project is communication and Pluto makes it much easier to demonstrate and explain your project.

Automatic Package Management

Pluto integrates seamlessly with Pkg to allow automatic package management in your notebooks. Not only that, but you don't actually need to install packages outside of Pluto. All the information Pluto (and Julia) needs to run and reproduce your notebook is stored right inside the notebook itself! 

This means that you can share your notebook with colleagues or classmates, and you can be sure that all the right packages that that notebook needs to run will go with it.

Version Control

All Pluto notebooks are stored as executable .jl files. If you open up a notebook in a text editor, it will look a little different from the notebook you see in your browser. The file will contain all the information needed by the notebook, such as the code, the cell dependencies, and the order of execution. However, these files do not contain any output. All of this makes version control using Git and GitHub much easier.

Exporting & Sharing

Pluto notebooks can be exported as a .jl executable file, a static PDF, or a static HTML file. If you export as HTML, then the person you share it with will also get the option to download and edit the raw notebook file without having Julia installed on their machine. 

Pluto achieves this by partnering with Binder - a free platform that hosts Pluto notebooks online (it also works with other programming languages, like Python and R).

This feature is the last step in a machine learning workflow: first you conduct your analyses, then you build an interactive report in your notebook to demonstrate the results, and lastly you are able to share the notebook with technical colleagues, who are able to reproduce and edit the analysis, as well as with those that are non-technical.

Resources for Learning Julia

These are some of the most highly recommended resources for learning about the Julia programming language and how to use it in data science and machine learning:

Start Learning Julia Today

Take our Introduction to Julia course

Julia vs R - Which Should You Learn?

August 14, 2023

Julia vs R - Which Should You Learn?



Compare the main elements of Julia vs R programming languages that set them apart from one another and explore the current job market for each of these skills.


Navigating the maze of programming languages can be overwhelming, especially if you are new to data science and analytics. Two competing languages are Julia and R. In this article, we compare the main elements of Julia vs R programming languages that set them apart from one another and the current job market for each of these skills.

Overview of Julia and R

The R programming language is a specialized statistical software that has been around for almost 30 years. It is a mature programming language with packages that allow you to do almost anything you want. However, it is predominantly used for statistics applications, including data science and nearly all forms of data analysis and data manipulation. We have an Introduction to R course that will quickly get you up to speed on the basics.

For more general-purpose programming, one would turn to other programming languages instead of R. One of these languages is Julia, a much newer programming language having only been around for about 10 years. Julia specializes in all forms of scientific programming but also allows you to do more general-purpose programming. The stand-out feature of Julia is its speed. It can handle large amounts of data and complex computations at blazing speeds while still being easy to use. For an introduction to Julia, check out our course.

Want to Earn daily 500 to 800 USD

 by selling High demand &

 Ultra modern and novel Gadgets online ?

START HERE 

Choosing a Programming Language

When joining a data-related field like data science, data analytics, or statistics, you must choose a programming language to learn. This decision is based on many factors, such as the industry you want to join and the nature of your job. You can read about the top programming languages for data scientists in a separate article. 

However, a crucial part of choosing a programming language is to get started. There is no perfect programming language to solve every kind of problem. Some languages are better or more efficient than others in solving particular problems. Therefore, you will likely need to learn more than one programming language and other tools throughout your career in data.

It is also essential to focus on just one programming language at a time to master it faster than if you tried to learn several languages at once.

An excellent programming language to learn first is R. However, Julia is becoming a solid contender that any new or experienced programmer or analyst should consider. We have a separate blog post on the rise of Julia and whether it is worth learning.

Julia vs R Comparison

Both Julia and R are specialized programming languages designed to analyze and manipulate data. This makes them good choices for data scientists, data analysts, and statisticians.

In this section, we will go over the four main elements of these programming languages that sets them apart from one another:

  • IDEs and Notebooks
  • Syntax
  • Packages
  • Resources and Support

IDEs and Notebooks

An Interactive Development Environment (IDE) is an application for writing, testing, and debugging code, often within a single graphical user interface. They offer many features that help you to develop new applications and solutions quicker.

The most common IDE is Visual Studio Code, or VSCode for short. You can add community-built extensions to VSCode that support nearly every programming language, including Julia and R. However, VSCode is the most popular IDE among Julia users with the Julia for VSCode extension.

R-Studio is an IDE that has become synonymous with the R programming language. You will be hard-pressed to find an R programmer that does not use or has at least tried, R-Studio as their IDE. R-Studio also supports other programming languages, like Julia and Python. Check out our full R-Studio guide for more information. 

In terms of notebooks, you can use Jupyter Notebooks for both Julia and R. The name Jupyter actually stands for Julia, Python, and R. You can check out our Jupyter cheat sheet to find out more about the notebook app. 

While Jupyter has become commonplace in data science, it comes with some downsides, particularly with version control and reactivity. This is where R and Julia can use more specialized notebook software that often overcome these downsides.

The R-Studio IDE offers the R Markdown file format, which lets you write code in notebooks. Julia, however, has specialized notebook software in the form of a package called Pluto. Pluto notebooks are reactive and interactive, which ensures code cells are always up-to-date and allows you to add interactive elements like sliders and input boxes.

Syntax

Julia and R have similar syntax because both are dynamically typed, interpreted programming languages with the same control structures like loops and conditional logic. You can use these cheat sheets to quickly and easily reference the syntax of these languages:

However, there are two main aspects of the syntax that you must consider when comparing R and Julia;

  • Single vs multiple dispatch
  • Vectorization

R uses an object-oriented programming approach through two systems called S3 and S4. The original implementation of R uses single dispatch in the S3 system to identify the most appropriate method based on the first argument's class to a function. However, the new S4 system uses multiple dispatch, where types are matched when choosing the most appropriate method to call.

Multiple dispatch is built into the design of Julia, and the implementation of it is very intuitive and incredibly fast.

In addition, there is no need to write vectorized code in Julia since it is already incredibly fast without it. However, vectorized code is a requirement with R to improve speed and performance.

Packages

There are just under 19,000 packages on the CRAN repository that houses all the available R packages. That is an impressive number of packages! Since R has been around for a few decades, there has been more than enough time for R users and experts to build and submit their own packages. This makes R an extremely versatile programming language, capable of providing solutions to many problems.

On the other hand, there are over 7,400 packages registered on Julia's general registry. Since Julia is a relatively young programming language, it still needs quite a bit more time to catch up to a mature language like R.

Want to Earn daily 500 to 800 USD

 by selling High demand &

 Ultra modern and novel Gadgets online ?

START HERE 

Both R and Julia allow you to call functions between each other and from other programming languages like Python. A good example of this is the popular deep learning Python package Keras, which can be called from both R and Julia. However, a downside is that you lose out on some of the benefits of the programming language you're calling it from. For example, if you call a Python package from within Julia, you would lose out on Julia's incredible speed and multiple dispatch.

In addition, both R and Julia handle package management very well. R has dedicated libraries for package and dependency management - Packrat and renv. Both allow you to create isolated project environments and keep track of package dependencies.

Julia has a built-in package manager called Pkg, which handles package installation, updates, and removal. Pkg allows packages to be managed within the local environment you are working in. Everything is stored in a local manifest file that can also be version controlled. However, the truly great thing about package management with Pkg in Julia is that environments are stackable. This means you can use the packages and their dependencies from another environment within the one you're working in.

Resources and Support

Due to R's popularity and widespread adoption, there are far more resources and community support than Julia. As an example, we compare the number of current (at the time of writing) active questions on Stack Overflow between Julia and R -- this is around 470,000 for R and only around 11,000 for Julia. This demonstrates the big difference in the number of users of each programming language.

However, there are now many resources available about Julia, with more added constantly as the programming language grows in its user base and popularity. The Julia community is also very active and welcoming to new users. This is demonstrated in the percentage of currently unanswered questions on Stack Overflow between Julia and R -- this is around 26% for R and only 15% for Julia.

R vs Julia Comparison Table

We’ve compiled the information about the two languages into a table to help you understand the key similarities and differences: 

Feature

Julia

R

IDEs and Notebooks

VSCode, Pluto notebooks (reactive and interactive)

R-Studio, R Markdown notebooks

Syntax

Multiple dispatch, no need for vectorization

Single dispatch, requires vectorization

Packages

Over 7,400 packages on registry

Almost 19,000 packages on CRAN repository

Resources and Support

Strong online community and documentation

Strong online community and extensive history

Known for

Fast performance

Large number of packages, versatility

Interoperability with other languages

Can call functions from other languages, including R and Python

Can call functions from other languages, including Julia and Python

This table provides a high-level overview of the main differences between Julia and R. It is worth noting that this is not an exhaustive list of all the differences between the two languages and that there may be other factors to consider when choosing between Julia and R for a specific project.

Job Market for Julia and R

R is far more widely adopted in academia and business than Julia, so it is much easier to find a job if you can demonstrate proficiency in using the R programming language.

While fewer businesses use Julia in their data science and analytics projects, the Julia programming language is starting to grow in popularity. We have a blog post exploring the applications of Julia programming. Check it out if you want to find out what Julia is used for today. Businesses are now beginning to recognize the enormous benefit of using Julia to develop solutions to their business problems. This is especially evident in the potential cost saving of running Julia code in production due to Julia's impressive speed and performance.

To get an idea of the job outlook for each of these skills, we compare the number of job openings (according to LinkedIn) in the US for R and Julia where they are listed as skill requirements. There are currently over 150,000 open positions for R and only 1,190 open positions for Julia.

Want to Earn daily 500 to 800 USD

 by selling High demand &

 Ultra modern and novel Gadgets online ?

START HERE 

Conclusion

Data science and analytics are evolving fields where you must use and develop solutions with more than one tool or programming language. Therefore, when just starting your career in data, you will need to choose a programming language to learn first - this could be R, Julia, Python, MATLAB, SAS, or even C.

However, the most important thing is picking one and getting started. Eventually, you will need to expand your skillset, and it is highly recommended that you learn a second programming language. You may also pick up skills in a variety of different tools along the way - such as data visualization tools like Power BI and Tableau. You can also learn data visualization with R with DataCamp's track.

Based on the popularity of R and the volume of job openings in business today, R would be an excellent first choice for a beginner in data science and related fields. However, if you have already been working in a data-related role for a few years, you might find immense value in branching out into learning Julia as it can bring significant benefits to your current or future employer.

Julia vs R FAQs

Is Julia faster than R?

Julia is generally known for its fast performance, particularly when it comes to numerical and scientific computing. R is not as fast as Julia, but it has a large number of packages and is versatile, which may make it a better choice for certain projects.

Can I use R and Julia together in a project?

Can I use the same tools and resources for both R and Julia?

ads 728x90 B
Powered by Blogger.